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Abstract

The geometry of the Dynamically Accessible Volume, DAV, in polymeric materials has been observed by means of the Bond Fluctuation
Model. Simulations were conducted in conditions that yield varying amounts of accessible volume in the lattice, acting on the density of the
system, and introducing geometrical restrictions to motion. A parameter has been defined to characterise the connectivity of holes characterising
the number and size of hole clusters. The mobility of the accessible cells during athermal simulations has also been characterised concluding that
all the holes in the lattice are in motion, contributing to the diffusion of the molecules even for the lowest values of DAV. The number of clusters
increases with decreasing DAV reaching a maximum. For values of DAV below that of the maximum number of hole clusters, the diffusion
coefficient becomes smaller than that predicted by the quadratic ratio D ¼ gjDAVj2 The differences in the dynamics of individual molecules
and polymer chain systems are studied.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Conformational mobility plays a central role in the physical
properties of glass-forming liquids. In the temperature interval
around the glass transition, the conformational rearrangements
of the molecules in a low-molecular weight glass-former, or
the segments of the polymer chain in a linear polymer or
a polymer network, are cooperative movements. The close
packing of the molecules makes that the motion of any of
them requires the motion of a neighbour molecule that succes-
sively needs that of another, thus producing a cascade of
events that stops when enough free space is found to lodge
a molecule in its destination site without disturbing the rest
of the material. Obviously, in this phenomenon not only the
amount of free volume, but also its distribution and mobility,
are of great importance.
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Molecular dynamics calculations using coarse grained lat-
tice models and Monte Carlo techniques can help to under-
stand the influence of the spatial distribution of molecules
and holes on the macroscopic behaviour. The Bond Fluctua-
tion Model [1e24], BFM, is a lattice model, which has been
widely employed in order to simulate polymer dynamics
[1e4,6e10]. In BFM, as in other lattice models, a number
of molecules or polymer chains occupy the cells of a lattice.
The density of occupied cells is high enough to simulate the
properties of a liquid but compatible, in the case of polymer
chains, with the difficulty of finding consecutive empty cells
to situate the chains. Nevertheless, the total number of cells
and the total number of occupied cells are fixed and conse-
quently, the fraction of empty cells, which is a constant, is
not a measure of free volume. In fact, the definition of a param-
eter that quantifies the space situated around the molecules
available for their motion is not trivial.

The Dynamically Accessible Volume (DAV) is a parameter
which was recently introduced in order to characterise free
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volume in lattice models [25e28]. This parameter distin-
guishes two kinds of empty cells. The cells that can be occu-
pied in one Monte Carlo Step (according to the rules of the
model) are called holes, whereas the rest of the cells are called
vacancies. The Dynamically Accessible Volume is the fraction
of holes of the system while vacancies are not taken into ac-
count. The mathematical definition of DAV can be expressed
in the form [29]:

DAV¼ 1
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where L is the box simulation size, nn is the number of nearest
neighbours of a cell and dij is a function defined as 1 when
a monomeric jump from the cell i to the cell j is allowed
and 0 in any other case.

Dawson and coworkers proposed the following relationship
between DAV and the diffusion coefficient [25e28]:

D¼ gjnj2 ð2Þ

where D is the diffusion coefficient, g is a non-universal factor
that depends on the model and n is the DAV. They showed that
the diffusion coefficients calculated with the KobeAndersen
[30] and BirolieMezard [31] models followed Eq. (2)
although significant deviations were found for low values of
DAV when the calculated diffusion coefficient is smaller
than expected by Eq. (2). The explanation for this behaviour
in the case of the KobeAndersen model was the existence
of isolated holes unable to diffuse, and thus not contributing
to the mobility of the polymer chains. In fact, when these
isolated holes are not taken into account in the calculation
of DAV, the quadratic behaviour prevails in the whole DAV
range [28].

In our previous work [29] we have tested the quadratic law
for polymeric materials with the Bond Fluctuation Model
under athermal conditions, showing that the non-universal
parameter g depends on the chain size. On the other hand, a
departure from quadratic law was found in the Bond Fluctua-
tion Model for low values of DAV analogous to those shown
by the KobeAndersen and BirolieMezard models. Our goal
in this work is to study the geometrical distribution and
mobility of DAV in the Bond Fluctuation Model depending
on molecular size, which gives some insight into the DAV
dependence of the diffusion coefficient.

2. Model and simulations

In the Bond Fluctuation Model every molecular group, that
represents 3e5 carbons of the polymeric chain, consists of
eight occupied sites forming a cube. The distance of the bonds
between molecular groups can fluctuate between 2 and

ffiffiffiffiffi
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is not allowed in order to avoid bond crossing
[3,32].

The dynamics of the model consists of randomly choosing
a molecular group and a local monomeric jump of 1 lattice
unit. The movement, in the athermal version of the model,
will be accepted if volume exclusion is respected and bond
lengths are between allowed margins.

All the simulations in this work consisted of a 3D box
(L¼ 40) with periodic boundary conditions [1]. No Hamiltonian
was employed in order to simulate athermal conditions. All
simulations began with an initial period of 105 Monte Carlo
Steps (MCS) in order to equilibrate the system, followed by
a period of 104 MCS in which the value of the calculated
parameters was averaged. All system configurations were rep-
licated 20 times in order to obtain reliable values. Computer
simulation was conducted with polymer chains consisting of
N¼ 5, 10, 15 and 20 consecutive segments and on individual
molecules (N¼ 1) as well.

Systems with different amounts of Dynamically Accessible
Volume were generated by varying the density of occupied
cells 4 and also using geometrical restrictions to molecular
motions, as in our previous work [29]. To allow the motion
of a molecule or chain segment from an original position to
a neighbour hole, a number of the cells that surround the ori-
gin and destination sites, what we called [29] the influence
cells, must be empty. The criterion to select the influence
cell of a given motion is that the sum of the distance of an
influence cell to the molecular group at the beginning and at
the end of the movement must be equal or less than
ð1þ

ffiffiffi
2
p
Þ lattice units. In other words, the distance from the

influence cell to the original position of the polymer segment
or to the destination site must be 1 lattice unit and must not
exceed

ffiffiffi
2
p

to any of them. This gives a total of 24 influence
cells per motion in a 3D lattice. So we define a parameter c
in such a way that a movement can only be performed if c
or more influence cells of a movement are empty. A value
c¼ 0 represents the standard model with no geometric restric-
tion, while increasing c between 0 and 18 (greater values for c
led to frozen systems where no diffusion was observed) con-
tributes to the geometric frustration. On the other hand, the
interval of variation of the density depended on the size of
the chains, due to the difficulty to find enough consecutive
empty space to allocate long chains. For chains sized 20 and
15 maximal density was f¼ 0.55 and f¼ 0.56 respectively.
Parameter c was employed in order to obtain different values
of DAV for a fixed density value, changing its values between
0 and 18, as in Ref. [29].

The diffusion coefficient was calculated from the expres-
sion [1,2,4,6]:

D¼ lim
t/N

g3ðtÞ
6t

ð3Þ

where g3(t) represents the evolution in time of the centre of
mass of the polymeric chains [1,2,4,6]:

g3ðtÞ ¼
�
½ r!CMðtÞ � r!CMð0Þ�2

�
ð4Þ

3. Results

The relationship between Dynamically Accessible Volume
and diffusion coefficient, according to BFM, is shown in
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Fig. 1. This plot has been built with the data given in Ref. [29].
The zone of low DAV values is emphasised in this plot. We
can observe that the points corresponding to the simulations
with all systems, polymer chains of different lengths and indi-
vidual molecules as well, converge for high DAV values on the
straight line that represents the quadratic behaviour of Eq. (2).
Nevertheless, the points separate from this behaviour for DAV
values below a certain critical value that is difficult to specify.
It is worth noting that all the points corresponding to the
simulations of polymer systems fall on the same line, but the
simulation of a low-molecular weight substance gives diffusion
coefficients higher than those of the polymers for the same
DAV for values below 0.1.

3.1. The distribution of Dynamically Accessible Volume

As explained above, one of the possible causes of the sep-
aration of the diffusion coefficient from the quadratic relation-
ship is the existence of part of the holes that are counted as
DAV but, in fact, are isolated and do not contribute to the
diffusion of molecules or polymer segments. The following
procedure has been used in this work to quantify the connec-
tivity of DAV and detect the presence of isolated holes in
BFM. When the accessibility of a cell in a MCS was deter-
mined, and thus considered as a hole, we considered how
many of the six nearest neighbours could be regarded as
a hole as well. This connectivity offers a first approach to
know whether the cells that constitute the Dynamically Acces-
sible Volume are isolated or, on the contrary, clustered. Fig. 2
shows a linear relationship of the connectivity between holes
while DAV decreases. This linear relationship only seems to be
lost when DAV reaches very low values, but there is no change
in the observed slope at the DAV values that correspond to the
loss of the quadratic law of Eq. (2).

The asymptotic limit for the least possible value of connec-
tivity is 2. This is due to the topology of the model. Every
molecular group forming a cube needs four free adjacent lattice
cells forming a square to move. A small number of empty cells
cannot form a hole because the molecular groups occupy more
space. This unit of four free accessible cells is the minimal
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Fig. 1. Double logarithmic representation of DAV against the normalised

diffusion coefficient (see Ref. [29]) for chains sized 1 (>), 5 (:), 10 (B),

15 (A) and 20 (6). The straight line represents the quadratic law.
expression for DAV in the Bond Fluctuation Model, and every
empty cell in this square is connected to two other neighbours;
thus, minimal possible connectivity for DAV is 2. On the other
side, a great difference between monomeric beads and poly-
meric chains is observed in Fig. 2, but all curves correspond-
ing to polymers collapse in a unique master curve independent
of the chain size. This shows the importance of the study of
polymer dynamics.

Once confirmed that in BFM the connectivity of the holes is
not directly related to the loss of the quadratic law, we studied
the topological distribution of DAV characterised by the num-
ber of hole clusters. We consider that two holes belong to the
same cluster if they are directly connected or they are con-
nected by means of a path formed by other holes. So, two cells
may belong to the same cluster even if they are not directly
connected.

The number of clusters was found to depend not only the
value of DAV, but also on a number of parameters that charac-
terise the system, such as density and geometric restrictions. In
all systems, this number of clusters presents a maximum for
a given value of DAV. To facilitate the comparison, Fig. 3
shows the values of the number of clusters normalised by
dividing all of them by the maximal number of clusters found
for a given system. It shows that the value of DAV for which
the number of clusters is maximum is independent of the chain
length in the case of polymer systems, but in the system
consisting of not bonded molecules the whole curve is shifted
towards lower values of DAV.

For high values of DAV, the number of holes is so large that
it is very easy to find paths connecting them, so holes are
distributed in a small number of large clusters. As DAV de-
creases these clusters are fragmented, thus the average size
of the clusters decreases and their absolute number increases.
At the point when the maximal value of clusters is reached, the
empty space is totally ‘atomised’. Further decrease of DAV,
below that of the maximum, continues diminishing the mean
size of the clusters as shown in Fig. 3, but their number is
decreasing as well.
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Fig. 2. Holes connectivity (see text) as a function of DAV for chains sized 1

(,), 5 (-), 10 (B), 15 (:) and 20 (>).
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The maximum number of hole clusters in a system consist-
ing of non-bonded molecules is reached for a DAV value of
approximately 0.12, while in polymers this value increases
to 0.14. It is not easy to calculate the exact point at which
the quadratic behaviour is lost, but the values of DAV in those
points are close to those of the maximum in Fig. 3. Thus, the
absolute values of DAV in the critical point are smaller in the
individual molecules than in polymer systems and the behav-
iour of the polymer systems seems to be independent of the
chain length. These features support the existence of a relation-
ship between the quadratic law and the evolution of the total
number of clusters of the system.

3.2. Mobility of Dynamically Accessible Volume in the
Bond Fluctuation Model

Apart from the distribution of holes in the lattice, what
seems essential to the evolution of the diffusion coefficient
is the ability of the holes to change their position contributing
to the diffusion of the molecules or polymer segments. As
mentioned above, in the KobeAndersen model, the isolation
of holes from the network of vacancies [28] makes those holes
become blocked and unable to contribute to the diffusion of
the system. In order to test this feature with the Bond Fluctu-
ation Model, we calculated which part of the holes was
blocked and which one was on movement, contributing to
the diffusion of particles. Following the evolution of DAV is
not so easy as following the molecular groups. A hole can be
created or disappear depending on the dynamics of the model,
and an oscillating movement can create and destroy a hole
while there is no diffusion.

In order to tackle this task, we have taken an ‘image’ of the
simulation box for every 100 Monte Carlo Steps during 104

MCS, so we have 100 configurations showing the evolution
in time of the system. If the system is really blocked and no
diffusion is observed, all configurations must be similar (holes
stay at the same position). In order to compare this, we took
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Fig. 3. Normalised number of clusters of Dynamically Accessible Volume (see

text) represented against DAV for chains sized 1 (,), 5 (-), 10 (B), 15 (:)

and 20 (>). Lines are only an intended guideline for the eye.
the first configuration as a reference and calculated its differ-
ence (cell by cell) with the configuration of the system in other
time instants:

Dif DAVðtÞ ¼ 1

2L3

XL

i

XL

j

XL

k

jDAVðt; i; j;kÞ�DAVð0; i; j;kÞj

ð5Þ

where the function DAV(t,i,j,k) will have a value of 1 if the cell
(i,j,k) at time t is a hole and 0 if it is a vacancy or has been
occupied by a molecule or chain segment. The factor 1/2 is in-
cluded because each change of position of a hole is counted
two times in the sum. Due to the fluctuation of DAV by the
contribution of created or disappeared holes, we averaged
these values during 104 MCS for 20 simulations in order to
cancel random fluctuations caused by Monte Carlo method.

On the other hand, there is a number of holes that even hav-
ing changed their position during the time elapsed between
0 and t, their position at the time t is the original one, and
so do not contribute to the sum of Eq. (5). The probability
of such a situation is just DAV2. Thus, the final fraction of
holes that are moving in the lattice is:
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We have calculated this amount of mobile DAV for every sim-
ulation and compared it with the total DAVs (Fig. 4). The
slope of all lines is between 1.0048 and 1.0188, very close
to the unity. This indicates that almost all DAVs are really
moving and changing its position during the simulation. This
feature can be observed independently of having monomers
or different chain sizes, and is valid also for very low values
of DAV where the quadratic law is not fitted. This fact indi-
cates that in the Bond Fluctuation Model most of DAVs are
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always mobile, even for low values, contributing to the diffu-
sion of the molecules.

4. Discussion

Dynamically Accessible Volume is, in some way, a measure
of the interface between the material and the empty space in
the lattice, as seen from the point of view of the empty space.
The relationship between the number of accessible cells and
molecular mobility is not as direct as it could appear. As an
example, an isolated hole surrounded by z occupied cells
counts as a unit of DAV (in fact 1/L3) while allows the dis-
placement of any of the z molecules in the next Monte Carlo
trial, whereas in the case of a plane surface that separates
occupied cells and holes there is a hole per molecule with
capacity to move. This is just to state that not only the number
of accessible empty cells, but also the spatial distribution of
holes, vacancies and occupied cells may be important in
molecular mobility in lattice models.

Eq. (2) establishes a simple and quite natural relationship
between molecular mobility and DAV. Thinking of individual
molecules (not polymer chains) and taking into account
Eqs. (3) and (4), this relationship expresses that the mean
squared distance in the motion of a molecule in the equilibrate
system is proportional to the square of the fraction of accessi-
ble cells.

In athermal simulations, the distribution of holes, vacancies
and molecules in the lattice is just governed by probability cri-
teria according to the mobility of the molecules. During the
equilibration of the system, starting from an arbitrary initial
distribution of the molecules in the lattice, the system chooses
a distribution of holes that depends on the amount of DAV in
the system, as has been discussed in Section 3.1. And, with
this distribution, if the value of DAV is high enough, Eq. (2)
is satisfied. The amount of DAV can be varied in the simula-
tion obviously changing the fraction of occupied cells. In
this work, in addition, we have used a geometrical restriction
to motion to vary the accessibility of the empty cells. Thus,
with the same fraction of empty cells, the system may have
different fractions of holes, or different values of DAV. The
fact that the points in Fig. 1, corresponding to the same density
but different values of the geometrical restriction, fall on the
same line than the points corresponding to different densities
without any geometrical restriction is a strong support of the
adequacy of DAV as a parameter characterising the dynamics
of the system.

The relationship given by Eq. (2) determines the highest
efficiency of the existing number of holes to facilitate the
mobility of the molecules. The dynamics of the system yields
to the adequate spatial distribution of holes. As shown in
Section 3.1, the system reacts to the decrease of DAV distri-
buting the holes in a higher number of smaller clusters
(Fig. 3). According to the example given in the first paragraph
of this section, the same number of holes can facilitate the
motion of a higher number of molecules. For values of DAV
higher than around 0.1 (roughly speaking) the system reaches
in this way the maximum mobility determined by Eq. (2).
Situations in which the diffusion coefficient is smaller than
that predicted by using Eq. (2) for a given value of DAV can be
expected if a part of the empty cells is not useful for the dif-
fusion of the molecules. In thermal systems, the change of the
energy of the total systems produced by the motion of a mole-
cule to a neighbour hole plays a role in accepting or not such
movement, according to Metropolis criterion. In that case, for
instance, a hole in vicinity of an ordered, crystalline surface
(accessible according to geometrical criteria) could in fact
be never accessed because of the low probability of any mol-
ecule that separates from the rest moving to it. In these sys-
tems, the definition of DAV used in this work no longer
describes properly the dynamics of the system, and a modifica-
tion was proposed in Ref. [33] to take into account the prob-
ability with which a hole can be acceded. But there is no
similar situation in athermal systems. In athermal systems
the accessibility of a hole is controlled just by geometrical rea-
sons. The possibility mentioned in Ref. [28], with respect to
the KobeAndersen model, that some isolated holes could
not contribute to the molecular diffusion, being in practice
immobile, has been analysed in Section 3.2 for BFM. Clearly
in this model there is no change of behaviour in the mobility of
the holes, even for the smallest values of the Dynamically
Accessible Volume. A linear relationship was found between
the parameter defined in Section 3.2 to characterise the mobil-
ity of a hole, Eq. (6), and DAV. In the Bond Fluctuation Model
holes propagate quite easily in athermal conditions.

The reason for the decrease of the diffusion coefficient be-
low the quadratic relationship of Eq. (2) must then be found in
the impossibility of the dynamics of the system (below a criti-
cal value of DAV) to distribute the accessible cells in the
whole volume occupied by the molecules. In this way, the
local fraction of holes in the vicinity of a number of molecules
can become smaller than the average and its mobility reduced.
As a consequence, the average diffusion coefficient becomes
smaller than that expected. The start of this phenomenon
seems to be related to the maximum number of hole clusters
(Fig. 3) that establish a change in the trend of distribution of
accessible cells in the lattice.

Another interesting feature is the clearly different behav-
iour of individual molecules and polymer chains. The differ-
ences with respect to diffusion coefficient can be due to the
fact that D takes into account the mobility of the centre of
mass of the polymer chain, and a number of molecular
motions of the chain segments cannot actually contribute to
the chain diffusion. This can justify that the critical value of
DAV for the loss of the quadratic behaviour occurs in polymer
chains at DAV values higher than in the individual molecules.
Nevertheless, the different behaviour regarding mobility of
beads and polymer chains can have more significance, since
the distribution of the holes in the lattice is different as well,
as shown in Figs. 2 and 3, although the mobility of the holes
is exactly the same in both kinds of systems. It is worth noting
with respect to this point that the chain connectivity that
introduces a restriction to the accessibility of the empty cells
in the vicinity of a polymer chain is taken into account
when determining the value of DAV.
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5. Conclusion

In this work, we have studied the spatial distribution of
Dynamically Accessible Volume in the Bond Fluctuation
Model. The minimal unit of the Dynamically Accessible
Volume is formed by four empty cells forming a square. Two
parameters have been used to characterise the influence of
the fraction of holes in the lattice on their distribution: one of
them is a connectivity parameter that determines the average
number of accessible cell sites connected to each other in a
cluster, and the other is the number of such DAV clusters. It
has been found that the connectivity parameter decreases line-
arly with DAV until very low values (its minimum value is 2).
On the other hand, the number of clusters goes through a maxi-
mum when represented against DAV. The mobility of the holes
has also been characterised concluding that in BFM there are
no immobile holes even for the smallest values of DAV. The
quadratic relationship between the diffusion coefficient and
DAV determines the maximum efficiency of the existing holes
to facilitate the mobility of the molecules. At low values of
DAV, the diffusion coefficient becomes smaller than expected
by the quadratic law when the number of hole clusters cannot
be further increased by the dynamics of the system and a part of
the molecules has no direct access to them. There is a signifi-
cant difference in the critical value of DAV for which the
diffusion coefficient separates from the quadratic law in the
dynamics of low-molecular weight substances and in polymer
chains, but qualitatively the behaviour is the same.
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[9] Muller M, Binder K, Schäfer L. Macromolecules 2000;33:4568e80.

[10] Rubio A, Storey M, Felicity J, Lodge M, Freire JJ. Macromolecular

Theory and Simulations 2002;11(2):171e83.

[11] Muller M. Macromolecules 1997;30:6353e7.

[12] Baschnagel J, Paul W, Tries V, Binder K. Macromolecules 1998;31:

3856e67.

[13] Lai PY. Chinese Journal of Physics 1998;36(3):494e500.

[14] Okun K, Wolfgardt M, Baschnagel J, Binder K. Macromolecules 1997;

30:3075e85.

[15] Binder K. Computer Physics Communications 1999;121:168e75.

[16] Baschnagel J. Journal of Physics: Condensed Matter 1996;8:9599e603.

[17] Paul W. Proceedings of the international workshop on non-equilibrium

phenomena in supercooled fluids, glasses and amorphous materials;

1996: p. 220e4.

[18] Wittkop M, Hölzl T, Kreitmeier S, Göritz D. Journal of Non-Crystalline

Solids 1996;201:199e210.

[19] Tanaka M, Iwata K, Kuzuu N. Computational and Theoretical Polymer

Science 2000;10:299e308.

[20] Deutsch HP, Binder K. Macromolecules 1992;25:6214e30.

[21] Müller M. Macromolecules 1995;28:6556e64.

[22] Müller M, Binder K. Macromolecules 1995;28:1825e34.

[23] Jilge W, Carmesin I, Kremer K, Binder K. Macromolecules 1990;23:

5001e13.

[24] Scot Shaffer J. Macromolecules 1996;29:1010e3.

[25] Dawson KA, Lawlor A, McCullagh GD, Zaccarelli E, Tartaglia P.

Physica A 2002;316:115e34.

[26] Dawson KA, Lawlor A, DeGregorio P, McCullagh GD, Zaccarelli E,

Fo G, et al. Faraday Discussions 2003;123:13e26.

[27] Lawlor A, Reagan D, McCullagh GD, De Gregorio P, Tartaglia P,

Dawson K. Physical Review Letters 2002;89(24):245503.

[28] Lawlor A, De Gregorio P, Dawson KA. Journal of Physics: Condensed

Matter 2004;16:S4841e8.

[29] Molina-Mateo J, Meseguer-Due~nas JM, Gómez-Ribelles JL. Polymer
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